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Abstract
The two-level pairing model was investigated in the framework of the
Schwinger representation. It has been shown that zero-point fluctuations, which
are important in the crossover region, are well described by certain coherent
states which conserve the constants of motion. These so-called conserving
approximations provide excellent descriptions of the ground-state energy and
of the first excitation energy over the whole range of coupling constant values.
The description of the ground-state energy provided by the Glauber coherent
state is also reasonable, but not so good. Although the Glauber coherent state
fails to provide the description of the excitation energy around the critical
point, its performance in the strong coupling limit is very good both for the
description of the ground-state energy and of the first excitation energy. The
present results also show that already at the mean-field level, the bosonic
description in the independent particle approximation incorporates important
correlation corrections to the conventional mean-field description based on the
fermionic realization of the su(2) algebra (BCS theory).

PACS numbers: 21.60.Fw, 21.60.Jz, 71.10.−w, 74.20.Fg

1. Introduction

Correlations play an important role in quantum many-body systems. Their study is a major
challenge in various fields of physics. The existence of correlations and the emergence of
phase transitions are interdependent. The study of this interdependency in simple models,
which has been considered by many authors [1–3], is very instructive.

In particular, the transition to superconducting or superfluid phase in interacting Fermi
systems has been attracting the attention of physicists since Kamerlingh Onnes made his
spectacular discovery in 1911. Important aspects of the underlying physics of this phenomenon
are well described by the two-level pairing model, which has been extensively investigated by
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various researchers [4, 5]. It is well known that the building blocks of the two-level pairing
model are Cooper-pair operators P

†
i , Pi and fermion number operators Ni associated with

each level i, constituting the generators of a su(2) ⊗ su(2) algebra. The model refers to a
system of nucleons subject to an average potential and interacting via a pure pairing force,
i.e. nucleon pairs couple to total spin zero so that their wavefunctions have maximal spacial
overlap. Each level has the same degeneracy 2�. The general form of the Hamiltonian is

H = ε(N1 − N2) + g

2∑
i,j=1

P +
i Pj ,

where ε is the energy difference between the two levels and g is the coupling constant for the
pairing interaction, according to equations (2) and (3) in the following section. A superfluid
phase will only occur for a strong enough coupling constant g. This model was invented to
test the Bardeen–Cooper–Schrieffer (BCS) theory of super conductivity and is easily solved
within its framework, i.e., in terms of Bogoliubov quasi-particles, providing also a very simple
and powerful description of pairing forces in nuclei. It is well known that the BCS theory
leads to a sharp transition from the normal to the superconducting phase. However, in an
actual many-body system with a finite number of degrees of freedom, such as a nucleus,
the transition is not sharp but smooth, due to quantum fluctuations which become then very
important. Therefore, in order to properly describe the transition region we have to go beyond
the mean-field approximation. Well-known boson expansion techniques [1, 6] have been
exploited for this purpose by several authors. The idea of describing the dynamics of many-
body systems in terms of bosons has a long history. Bosons were introduced in the collective
model of Bohr and Mottelson [7] through the quantization of the oscillations of a liquid drop
to describe excitations of nuclei. Following the ideas of Sawada [8], the quasi-particle random
phase approximation was formulated to describe collective oscillations of spherical nuclei [9].
In this vein, as a natural development, the so-called boson expansion methods were formulated
[6, 1]. For the present development, we will consider the Schwinger representation of the
su(2) algebra. Following some ideas introduced in a previous paper of Kuriyama et al [10], we
focus on the two-level pairing model in the framework of the Schwinger boson representation,
based on the use of four kinds of boson operators.

The paper is organized as follows. In section 2, the two-level pairing model is presented
and the Schwinger boson representation is introduced. In section 3, the model is studied in the
framework of the Glauber coherent state. It is observed that the well-known BCS wavefunction
is equivalent to the projection of the Glauber coherent state on appropriate eigenspaces of the
Casimir operators. Conserving approximations in terms of eigenstates of the constants of
motion of the model are studied in section 4. The possibility of describing intrinsically excited
states is discussed in section 5.

2. Two-level pairing model

The two-level pairing model describes a system of fermions distributed between two 2�-fold
degenerate levels. Although, in general, the levels may have different degeneracies, here we
focus on the simpler cases in which both levels have the same degeneracy. This model is
formulated in terms of creation and destruction operators for fermions, satisfying appropriate
anti-commutation relations{
c
†
mi, c

†
nj

} = {
d
†
mi, d

†
nj

} = {
d
†
mi, c

†
nj

} = {cmi, cnj } = {dmi, dnj } = {dmi, cnj } = 0,{
c
†
mi, cnj

} = {
d
†
mi, dnj

} = δmnδij ,
{
d
†
mi, cnj

} = {
dmi, c

†
nj

} = 0,

m, n = 1, · · · ,�, i, j = 1, 2.

(1)
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The building blocks of the Hamiltonian of the model are the generators of the su(2) ⊗ su(2)

algebra:

Ni =
�∑

m=1

(
c
†
micmi + d

†
midmi

) − �,

Ai+ =
�∑

m=1

c
†
mid

†
mi, Ai− =

�∑
m=1

dmicmi, i = 1, 2.

(2)

The two-level pairing model is defined by the Hamiltonian

H = ε(N1 − N2) + g(A1+ + A2+)(A1− + A2−), g < 0. (3)

This operator admits three constants of motion, namely, the Casimir operators,

Ci = 1
4N2

i + 1
2 (Ai−Ai+ + Ai+Ai−), i = 1, 2 (4)

and the operator

N = N1 + N2 = 2� − 2� = 0. (5)

The zero eigenvalue reflects the assumption of the number of fermions being equal to the
degeneracy of each level. The pairing model has been used to test the performance of the BCS
wavefunction [4, 5]:

|�BCS〉 = exp

(
2∑

i=1

αi

�∑
m=1

c
†
mid

†
mi

)
|0F 〉, (6)

where |0F 〉 is the fermion vacuum. It is well known that the BCS wavefunction works very
well everywhere except in the vicinity of the critical point, since the neglected quantum
fluctuations play there an important role. It is the main aim of the present article to investigate
the possibility of improving the description of that region with the help of the Schwinger
representation of the su(2) algebra.

In the Schwinger representation, the su(2) generators are expressed in terms of boson
operators. Introducing boson creation and destruction operators such that[
ai, a

†
j

] = [
bi, b

†
j

] = δij ,[
a
†
i , a

†
j

] = [
b
†
i , b

†
j

] = [
a
†
i , b

†
j

] = [ai, aj ] = [bi, bj ] = [ai, bj ] = [
ai, b

†
j

] = 0,
(7)

the generators of the algebra are written

Ñi = a
†
i ai − b

†
i bi, Ãi+ = a

†
i bi, Ãi− = b

†
i ai, i = 1, 2. (8)

In the Schwinger representation, the Hamiltonian reads

H = ε
(
a
†
1a1 − b

†
1b1 − a

†
2a2 + b

†
2b2

)
+ g

(
a
†
1b1 + a

†
2b2

)(
b
†
1a1 + b

†
2a2

)
.

= ε
(
a
†
1a1 − b

†
1b1 − a

†
2a2 + b

†
2b2

)
+ g

(
a
†
1a1 + a

†
2a2

)
+ g

(
a
†
1b

†
1a1b1 + a

†
2b

†
2a2b2 + a

†
2b

†
1a1b2 + a

†
1b

†
2a2b1

)
, (9)

and the constants of motion are written

N = a
†
1a1 + a

†
2a2 − b

†
1b1 − b

†
2b2, (10)

Q1 = a
†
1a1 + b

†
1b1, Q2 = a

†
2a2 + b

†
2b2. (11)

The operators Q1,Q2 play the same role as the Casimir operators. Under the present
conditions, the physical subspace is defined by N = 0,Q1 = Q2 = �. Therefore, in
the physical subspace,

a
†
1a1 = b

†
2b2, b

†
1b1 = a

†
2a2.

The boson realization of the pairing model may be safely used to describe the fermion system
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which it is supposed to represent provided the constants of motion N,Q1, Q2 are properly
taken into account. In the physical subspace characterized by these constants of motion, the
fermion and boson realizations of the model are exactly equivalent.

3. Glauber coherent state

Let us consider the description of our system provided by a Glauber coherent state

|�〉 = exp
(
α1a

†
1 + α2a

†
2 + β1b

†
1 + β2b

†
2

)|0〉, (12)

where α1, α2, β1, β2 are complex numbers and |0〉 is the boson vacuum. It may be easily
seen that (the boson image of ) the BCS wavefunction (6), which will not be considered in
the present calculations, is precisely the projection of the Glauber coherent state (12) on the
eigenspace of the operators Q1,Q2, (equation (11)) corresponding to the common eigenvalue
�. For the state (12), the expectation value of the Hamiltonian reads

E = 〈�|H |�〉
〈�|�〉 = ε(|α1|2 − |β1|2 − |α2|2 + |β2|2) + g(|α1|2 + |α2|2)

+ g(|α1|2|β1|2 + |α2|2|β2|2 + α∗
2β

∗
1 α1β2 + α2β1α

∗
1β

∗
2 ),

= 2ε(α2 − β2) + g(α2 + β2) + 2gα2β2(1 + cos(φ1 + ψ2 − φ2 − ψ1)). (13)

The last line follows if we take |α1| = |β2| = α, |β1| = |α2| = β, φ1 = arg α1, φ2 =
arg α2, ψ1 = arg β1, ψ2 = arg β2. This assumption is justified recalling that the condition
N = 0 implies |α1|2 + |α2|2 − |β1|2 − |β2|2 = 0 and the conditions Qi = � imply
|αi |2 + |βi |2 = �, i = 1, 2, which means that the constants of motion are being implemented
in the average. It follows that |α1|2 = |β2|2, |α2|2 = |β1|2. For φ1 + ψ2 − φ2 − ψ1 = 0, which
is the most favourable situation concerning the phases, the expectation value of the Hamiltonian
reduces to

E = 〈�|H |�〉
〈�|�〉 = 2ε(α2 − β2) + g� + 4gα2β2, β2 = � − α2, α2 � �. (14)

The ground-state energy is the minimum of E and is expressed as

E0 = −2ε� + g�, 0 � g � − ε

�
, E0 = ε2 + g2�(1 + �)

g
, g � − ε

�
. (15)

This quantity, represented in figure 1, reflects the superconducting transition. The critical
value of the coupling constant is gc = −ε/�.

According to its general definition, the Berry phase, needed to describe dynamical
processes, reads

B = i
〈�|�̇〉 − 〈�̇|�〉

2〈�|�〉 . (16)

For the Glauber coherent state we have

B = i

2
(α∗

1 α̇1 − α̇∗
1α1 + α∗

2 α̇2 − α̇∗
2α2 + β∗

1 β̇1 − β̇∗
1 β1 + β∗

2 β̇2 − β̇∗
2 β2)

= −α2(φ̇1 + ψ̇2) − β2(φ̇2 + ψ̇1)

= −1

2
(α2 + β2)(φ̇1 + ψ̇2 + φ̇2 + ψ̇1) − 1

2
(α2 − β2)(φ̇1 + ψ̇2 − φ̇2 − ψ̇1).

Since α2 + β2 is a constant of motion, the first term is a total derivative and may be dropped
from the Lagrangian. For 0 � g � − ε

�
and for small deviation from equilibrium, the Berry
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Figure 1. The ground-state energy versus |g|�/ε, for � = 3,� = 5 and � = 10. Variational
calculations based on the Glauber coherent state, Glauber coherent state with projection, deformed
trial state I, deformed trial state II and exact result.

phase and the expectation value of the Hamiltonian reduce, respectively, to

B = −
(

α2 − �

2

)
(φ̇1 + ψ̇2 − φ̇2 − ψ̇1)

E = 2ε(2α2 − �) + g� + 2g�α2(1 + cos(φ1 + ψ2 − φ2 − ψ1)),

so that the quadratic Lagrangian becomes

L(2) = i

2
(γ ∗γ̇ − γ̇ ∗γ ) − E (2), E (2) = 4εγ ∗γ + g�(2γ ∗γ +

√
γ ∗γ (γ + γ ∗)), (17)

where the complex number γ is such that |γ | = α, arg γ = (φ1 + ψ2 − φ2 − ψ1). With the
help of the Poisson bracket relations {γ ∗γ, γ ∗√γ ∗γ }P = −iγ ∗√γ ∗γ , {γ ∗γ, γ

√
γ ∗γ }P =

iγ
√

γ ∗γ , {γ√
γ ∗γ , γ ∗√γ ∗γ }P = −2iγ ∗γ, it may be easily seen that this Lagrangian leads

trivially to the RPA frequency

ω = 4ε

√
1 +

g�

ε
. (18)

In this connection, it may be observed that the choice of γ is not completely free from
ambiguity, since the alternative choice |γ ′| = α, arg γ ′ = (φ1 + ψ2 − φ2 − ψ1)/2 leads to
an RPA frequency with half the value in equation (18). This apparently paradoxical result
seems to be connected with a long-standing controversy on the RPA frequency associated with
the BCS treatment of the pairing model [5]. However, it is clear that while the frequency
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Figure 2. The frequency of small amplitude oscillations, ω, versus |g|�/ε, for � = 3, � = 5 and
� = 10. Variational calculations based on the Glauber coherent sate, Glauber coherent state with
projection, deformed trial state I, deformed trial state II and exact result.

ω in equation (18) corresponds to excitations within a specific sector characterized by given
eigenvalues of the constants of motion Q1,Q2, the frequency ω/2 corresponds to certain
excitations in which one of these constants of motion is violated, as discussed in section 5,
where it is remarked that the model admits also other sectors, characterized by different values
of the constants of motion.

For g � −ε/�, the Lagrangian may be expressed as

L = pθ̇ − E, E = 4εp + g� + 2g

(
�2

4
− p2

)
(1 + cos θ), (19)

where θ = φ1 + ψ2 − φ2 − ψ1, p = (α2 − β2)/2.
The RPA frequency

ω = 2
√

g2�2 − ε2

is easily obtained from the corresponding harmonic Lagrangian,

L(2) = δpθ̇ + 4g(δp)2 +
g

4

(
�2 − ε2

g2

)
θ2. (20)

In spite of the fact that the constants of motion are only implemented in the average, it is
gratifying that the performance of the Glauber coherent state is rather good. The behaviour
of the Glauber RPA frequency, shown in figure 2, is very similar to the behaviour of the
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RPA frequency obtained on the basis of the BCS treatment [4, 5] and reflects dramatically
the superconducting phase transition. This means, of course, that similarly to the BCS
wavefunction, the Glauber coherent state does not take into account quantum fluctuations.
Although the RPA frequency is poorly described in the transition region, for large |g| it is very
close to the exact excitation energy.

4. Conserving approximations

Since the Glauber coherent state gives a poor description of the system around the transition
region, an improvement is required. To this end, we consider eigenstates of the constants of
motion which provide what we call, in the following, conserving approximations.

4.1. Glauber coherent state with projection

We begin by considering the trial state vector

|�〉 =
�∑

p=0

αpβ(�−p)

(p!(� − p)!)3/2

(
a
†
1b

†
2

)p(
a
†
2b

†
1

)(�−p)|0〉. (21)

It is clear that N |�〉 = 0,Qi |�〉 = �|�〉, i = 1, 2. In subsection 4.2, a certain Glauber
coherent state is introduced whose projection on the subspace of good quantum numbers is
the image of |�〉 in equation (21) under Marumori’s mapping, this being the motivation for
the choice made. We introduce the functions

f (x, y,�) = (x + y)�

�!
,

γ (x, y,�) = x
∂f

∂x
− y

∂f

∂y
= (x − y)

(x + y)�−1

(� − 1)!
,

h(x, y,�) = xy
∂2f

∂x∂y
= xy

(x + y)(�−2)

(� − 2)!
,

η(x, y,�) = √
xy

�∑
p=1

x(p−1)y�−p

(p − 1)!(� − p)!

√
p(� − p + 1).

We find

〈�|�〉 = f (α∗α, β∗β,�),

〈�|a†
1a1 − b

†
1b1|�〉 = −〈�|a†

2a2 − b
†
2b2|�〉 = γ (α∗α, β∗β,�),

〈�|a†
1a1 + b

†
1b1|�〉 = 〈�|a†

2a2 + b
†
2b2|�〉 = �f (α∗α, β∗β,�)

〈�|a†
1b

†
1a1b1|�〉 = 〈�|a†

2b
†
2a2b2|�〉 = h(α∗α, β∗β,�),

〈�|a†
1b

†
2a2b1|�〉 = 〈�|a†

2b
†
1a1b2|�〉∗ = α∗β

|αβ|η(α∗α, β∗β,�).

The expectation value of the Hamiltonian may be expressed as

〈�|H |�〉
〈�|�〉 = H = 2ε

γ (�)

f (�)
+ g� + g

(
2

h(�)

f (�)
+

(α∗β + αβ∗)
|αβ|

η(�)

f (�)

)
. (22)

It may be easily verified that the variational expectation value depends only on the ratio x/y,
or α/β, as it should.
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The Berry phase reads

i
〈�|�̇〉 − 〈�̇|�〉

2〈�|�〉 = i�
α∗α̇ − α̇∗α + β∗β̇ − β̇∗β

2(α∗α + β∗β)
= �

φ̇ + ψ̇

2
+ �

α∗α − β∗β
α∗α + β∗β

φ̇ − ψ̇

2
,

where φ = arg α,ψ = arg β. The term �(φ̇ + ψ̇)/2 does not contribute to the Lagrangian
which finally becomes

L = γ (�)

f (�)

φ̇ − ψ̇

2
− 2ε

γ (�)

f (�)
− g� − g

(
2

h(�)

f (�)
+ 2 cos(φ − ψ)

η(�)

f (�)

)
.

The frequency ω of small amplitude oscillations is easily determined and is represented
in figure 2. This quantity is identified with the excitation energy of the first excited state and
is computed as

ω =
√

AB

N2
,

where

A = d2H
ds2

∣∣∣∣
s=s0

, B = −2g

(
η

f

)∣∣∣∣
s=s0

N = 1

2

d

ds

(
γ

f

)∣∣∣∣
s=s0

, s = |α|2
|β|2 ,

s0 being the value of s which minimizes H. We conclude observing that equation (21) leads
to a very good description of the ground-state and first excited state energies, over the whole
range of g values.

4.2. Marumori’s method

In this section we apply Marumori’s approach [1], to obtain the boson representation of the
dynamical variables of our system in terms of the relevant degrees of freedom. The Hilbert
space on which the Hamiltonian acts is spanned by the normalized kets

|p, q〉 = 1

p!q!

(
a
†
1b

†
2

)p(
a
†
2b

†
1

)q |0〉.

We consider auxiliary bosons c, d, their vacuum |0) and the auxiliary Hilbert space spanned
by the normalized kets

|p, q) = 1√
p!q!

c†pd†q |0)

and introduce the mapping

|p, q〉 → |p, q).

Under this mapping, the boson images of the operators, a†
1b

†
2, a

†
2b

†
1, a

†
1a1, a

†
2a2, b

†
1b1, b

†
2b2, . . . ,

are easily obtained. We find

a
†
1b

†
2 →

√
(c†c)c†, a

†
2b

†
1 →

√
(d†d)d†,

a
†
1a1 → c†c, a

†
2a2 → d†d, b

†
1b1 → d†d, b

†
2b2 → c†c.

For instance, we find

〈p′, q ′|a†
1b

†
2|p, q〉 = (p′, q ′|

√
(c†c)c†|p, q) = pδp′−1,pδq ′,q .

The remaining cases are similarly obtained.
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The boson images of the Hamiltonian H and of the trial ket |�〉 are now easily obtained.
We find

H → HB = 2ε(c†c − d†d) + g(c†c + d†d)

+ g(2c†d†cd +
√

(c†c)c†d
√

(d†d) +
√

(d†d)d†c
√

(c†c)),

|�〉 → |�B) = 1

�!
(αc† + βd†)�|0).

This justifies the choice of |�〉 in equation (21). In particular, we obtain 〈�|H |�〉 =
(�B |HB |�B), 〈�|�〉 = (�B |�B). The state |�B) is the projection of the Glauber coherent
state associated with the bosons c, d,

|�G) = exp(αc† + βd†)|0). (23)

4.3. Glauber coherent states with deformation and projection

The state |�B), except for the normalization factor, may also be written as

|�B) = exp(Wc†d)d†�|0).

This also suggests considering conserving approximations of the form [11]

|�I) = exp(W
√

c†cc†d
√

d†d)d†�|0),

|�II ) = exp(W
√

d†dd†c
√

c†c)c†�|0).

Except for normalization factors, these states coincide, respectively, with

|�I) =
∑

n

c†nd†(�−n)|0)
Wn√

n!((� − n)!)3
.

|�II ) =
∑

n

c†nd†(�−n)|0)
Wn√

(n!)3(� − n)!
.

These conserving approximations may be regarded to be based on deformed coherent states.
Then, for the ket |�I) we find

(�I |�I) =
�∑

n=0

|W |2n

((� − n)!)2
= fI (|W |2)

(�I |c†c − d†d|�I) =
�∑

n=0

|W |2n

((� − n)!)2
(2n − �) = γI (|W |2)

(�I |c†c + d†d|�I) = �(�I |�I) = �fI (|W |2)

(�I |c†cd†d|�I) =
�∑

n=0

|W |2n

((� − n)!)2
n(� − n) = hI (|W |2)

(�I |
√

c†cc†d
√

d†d|�I) = W ∗
�∑

n=1

|W |2(n−1)n

((� − n)!)2
= W ∗

|W |ηI (|W |2).

To compute the corresponding Berry phase (16) we need

(�I |�̇I ) − (�̇I |�I) = iθ̇
∑

n

(2n − � + �)|W |2n

((� − n)!)2
= iθ̇ (γI (|W |2) + �fI (|W |2)),

where θ = arg(W). The second term inside the last parenthesis does not contribute to the
equations of motion and may be dropped out from the Lagrangian. The expression for
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the expectation value of the Hamiltonian in state |�I) is the same as equation (22) with
the replacements f → fI , γ → γI , η → ηI , h → hI .

Similarly, for the ket |�II ) we find

(�II |�II ) =
�∑

n=0

|W |2n

(n!)2
= fII (|W |2)

(�II |c†c − d†d|�II ) =
�∑

n=0

|W |2n

(n!)2
(2n − �) = γII (|W |2)

(�II |c†c + d†d|�II ) = �(�II |�II ) = �fII (|W |2)

(�II |c†cd†d|�II ) =
�∑

n=0

|W |2n

(n!)2
n(� − n) = hII (|W |2)

(�II |
√

c†cc†d
√

d†d|�II ) = W ∗
�∑

n=1

|W |2(n−1)(� − n + 1)

((n − 1)!)2
= W ∗

|W |ηII (|W |2).

To compute the corresponding Berry phase we need

(�II |�̇II ) − (�̇II |�II ) = iθ̇
∑

n

(2n − � + �)|W |2n

(n!)2
= iθ̇ (γII (|W |2) + �fII (|W |2)).

The second term inside the last parenthesis does not contribute to the equations of motion
and may be dropped out from the Lagrangian. The expression for the expectation value
of the Hamiltonian in state |�II ) is the same as equation (22) with the replacements
f → fII , γ → γII , η → ηII , h → hII .

In figures 1 and 2, we present, respectively, the ground-state energy and the excitation
energy corresponding to the states |�I) and |�II ). The performance of |�II ) is remarkably
good.

5. Intrinsic excitations

Our model also admits intrinsic excitations. They occur when some of the single-particle states
are blocked up due to asymmetrical occupation. For instance, if r1 states are asymmetrically
filled up in level 1 and r2 in level 2, with r1 + r2 even, the number of free fermions becomes
effectively 2� − r1 − r2, and the degeneracy of the levels becomes 2�1 = 2(� − r1) for level
1 and 2�2 = 2(� − r2) for level 2. The eigenvalue of the operator N remains zero, reflecting
the half-filling hypothesis, but �1 − �2 = r2 − r1 = 2n. If n > 0, we are led to consider the
Hilbert space spanned by the kets

|p, q〉 = 1√
p!(p + n)!q!(q + n)!

(
a
†
1b

†
2

)p(
a
†
2b

†
1

)q
a
†n
1 b

†n
1 |0〉.

This is an invariant subspace of the Hamiltonian. The ket a
†n
1 b

†n
1 |0〉 is the effective vacuum of

the sector under consideration. For fixed values of p + q, the subspace spanned by these kets
cannot be decomposed into invariant subspaces of lower dimension. The methods we have
developed throughout may also be used to describe the states belonging to such intrinsically
excited sectors. We consider auxiliary bosons c, d, their vacuum |0) and the auxiliary Hilbert
space spanned by the kets

|p, q) = 1√
p!q!

c†pd†q |0)
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Figure 3. The order parameter. Variational calculations based on the Glauber coherent state and
Glauber coherent state with projection for � = 3,� = 5, � = 10.

and introduce the mapping

|p, q〉 → |p, q).

Under this mapping, the boson images of the operators a
†
1b

†
2, a

†
2b

†
1, a

†
1a1, a

†
2a2, b

†
1b1, b

†
2b2, . . . ,

are easily obtained. We find

a
†
1b

†
2 →

√
c†c + nc†, a

†
2b

†
1 →

√
d†d + nd†,

a
†
1a1 → c†c + n, a

†
2a2 → d†d, b

†
1b1 → d†d + n, b

†
2b2 → c†c.

If n < 0, the effective vacuum should be defined in terms of the operators a
†
2, b

†
2, as

a
†|n|
2 b

†|n|
2 |0〉. If we wish to go beyond the half-filling hypothesis, the condition N = 0 must be

relaxed.
Effective Hamiltonians describing intrinsically excited sectors may be obtained by this

approach.

6. Order parameter

We wish to comment on the choice of the order parameter whose behaviour illustrates the phase
transition associated with our model. It seems natural to choose α =

√〈
a
†
1a1

〉 =
√〈

b
†
2b2

〉
,

where 〈X〉 stands for the ground-state expectation value of X. In the framework of the Glauber
coherent state we find

α =
√

�

2
− ε

2|g| , for ε < |g|�,

α = 0, for ε � |g|�.

In figure 3, α
√

2/� has been plotted as a function of |g|�/ε, for the Glauber coherent state and
for the Glauber coherent state with projection, for different values of �. The phase transition
at |g| = ε/�, is clearly exhibited by the Glauber coherent state. As � increases, the results
corresponding to the Glauber coherent state with projection approach more and more closely
to the Glauber coherent state result.

7. Conclusions

The two-level pairing model was investigated in the framework of the Schwinger
representation. It has been shown that zero-point fluctuations, which are important in the
crossover region, are well described by certain coherent states which conserve the constants
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of motion. These so-called conserving approximations provide excellent descriptions of the
ground-state energy and of the excitation energy over the whole range of g values, especially
the second deformed state, |�II ). By excitation energy, we mean the excitation energy to
the first excited state belonging to the same sector as the ground-state, namely, the sector
characterized by the quantum numbers �1 = �,�2 = � and 0 of the constants of motion
Q1,Q2 and N. The description of the ground-state energy provided by the Glauber coherent
state is also reasonable, but not so good. Although the Glauber coherent state fails to provide
the description of the excitation energy around the critical point, its performance in the strong
coupling limit is very good both for the description of the ground-state energy and of the first
excitation energy. It may also be observed that, for g → 0, the excitation energy of the relative
ground state of some sectors (for instance, the sector defined by �1 = �−2,�2 = �,N = 0)
is half the excitation energy within a sector. This fact may explain why, as remarked by some
authors [5], the RPA frequency for the pairing model, in the framework of the BCS approach,
is half of the correct excitation energy. The present results also show that already at the mean-
field level, the bosonic description in the independent particle approximation incorporates
important correlation corrections to the conventional mean-field description based on the
fermionic realization of the su(2) algebra (BCS theory).

The analysis of the stability of the theory when the initial su(2) symmetry of the model
is broken by a small perturbation is an interesting open problem which we hope to consider in
a future publication.
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